Машины опорных векторов (SVM) - одна из самых мощных моделей машинного обучения, и с тех пор, как я начал готовить курсы, студенты часто обращаются к этой теме.
В наши дни, кажется, все говорят о глубоком обучении, но на самом деле было время, когда машины с опорными векторами считались более совершенными, чем нейронные сети. В этом курсе вы узнаете, что машина опорных векторов на самом деле является нейронной сетью, и они выглядят одинаково, если нарисовать диаграмму.
Самое сложное препятствие, которое необходимо преодолеть при изучении машин опорных векторов, заключается в том, что они очень теоретичны. Эта теория легко отпугивает многих людей, и может показаться, что изучение машин опорных векторов - это нечто непосильное. Это не так!
В этом курсе мы используем очень методичный, пошаговый подход к построению всей теории, необходимой для понимания того, как на самом деле работает SVM. В качестве отправной точки мы будем использовать логистическую регрессию, которая является одной из самых первых вещей, о которых вы узнаете, изучая машинное обучение. Поэтому, если вы хотите понять этот курс, просто имейте хорошую интуицию о логистической регрессии и, как следствие, хорошее понимание геометрии линий, плоскостей и гиперплоскостей.
В этом курсе рассматривается важнейшая теория, лежащая в основе SVM:
В наши дни, кажется, все говорят о глубоком обучении, но на самом деле было время, когда машины с опорными векторами считались более совершенными, чем нейронные сети. В этом курсе вы узнаете, что машина опорных векторов на самом деле является нейронной сетью, и они выглядят одинаково, если нарисовать диаграмму.
Самое сложное препятствие, которое необходимо преодолеть при изучении машин опорных векторов, заключается в том, что они очень теоретичны. Эта теория легко отпугивает многих людей, и может показаться, что изучение машин опорных векторов - это нечто непосильное. Это не так!
В этом курсе мы используем очень методичный, пошаговый подход к построению всей теории, необходимой для понимания того, как на самом деле работает SVM. В качестве отправной точки мы будем использовать логистическую регрессию, которая является одной из самых первых вещей, о которых вы узнаете, изучая машинное обучение. Поэтому, если вы хотите понять этот курс, просто имейте хорошую интуицию о логистической регрессии и, как следствие, хорошее понимание геометрии линий, плоскостей и гиперплоскостей.
В этом курсе рассматривается важнейшая теория, лежащая в основе SVM:
- Вывод линейной SVM
- Потери на петлях (и их связь с потерями на кросс-энтропии
- Квадратичное программирование (и обзор линейного программирования)
- Провисающие переменные
- Двойственность Лагранжа
- Ядро SVM (нелинейная SVM)
- Полиномиальные ядра, гауссовы ядра, сигмоидные ядра и строчные ядра
- Узнайте, как добиться бесконечной размерности признаков.
- Проективный градиентный спуск
- SMO (последовательная минимальная оптимизация)
- RBF-сети (нейронные сети с радиальной базисной функцией)
- Регрессия опорных векторов (SVR)
- Многоклассовая классификация
- Распознавание изображений
- Регрессионный анализ
- Обнаружение спама
- Медицинская диагностика
Для просмотра скрытого содержимого необходимо Войти или Зарегистрироваться.